If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+5c=3
We move all terms to the left:
c^2+5c-(3)=0
a = 1; b = 5; c = -3;
Δ = b2-4ac
Δ = 52-4·1·(-3)
Δ = 37
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{37}}{2*1}=\frac{-5-\sqrt{37}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{37}}{2*1}=\frac{-5+\sqrt{37}}{2} $
| 2(-x-4)=-22-4x | | -2(m+7)=-28-6m | | ×-3=2x+6/5 | | 5y+8=3y−2 | | 5,5y+8=3y−2 | | 8(x-3)+8=-16 | | .15*x+300=3300 | | 12^2=(8+x+5)(x+5) | | 300+c/8=20 | | 4x^2-74x+336=0 | | 60=2(x-3)+2x | | 3^(x+9)=8 | | -17=n- | | 8z-9=0 | | 7x-5(3x-11)= | | 9/2y-15+2y=11 | | -22.3y-58.1=y-715.16 | | -8t+3=29 | | 8/9+x=2/8 | | 6x+7=+2+4x+9 | | 150(10)^5x+3=1200 | | X^2-8x-12=8 | | a+15=100÷a | | 7y-37=15 | | -9(y+4)=-4y-41 | | 6g+1=7g+13 | | √x+9=11-x | | 2x-3/2+3/4=5x/3 | | 5x/(x-3)=20 | | 2(x+4)=+10 | | 2x-4+3(5-x5)=5(2x-1)+3(2x+5)-8x | | 2(x-6)=4(6-3x) |